A Comparative Quality Evaluation of PBSMT and NMT using Professional Translators

نویسندگان

  • Sheila Castilho
  • Joss Moorkens
  • Federico Gaspari
  • Rico Sennrich
  • Vilelmini Sosoni
  • Panayota Georgakopoulou
  • Pintu Lohar
  • Andy Way
  • Antonio Valerio Miceli Barone
  • Maria Gialama
چکیده

This paper reports on a comparative evaluation of phrase-based statistical machine translation (PBSMT) and neural machine translation (NMT) for four language pairs, using the PET interface to compare educational domain output from both systems using a variety of metrics, including automatic evaluation as well as human rankings of adequacy and fluency, error-type markup, and post-editing (technical and temporal) effort, performed by professional translators. Our results show a preference for NMT in side-by-side ranking for all language pairs, texts, and segment lengths. In addition, perceived fluency is improved and annotated errors are fewer in the NMT output. Results are mixed for perceived adequacy and for errors of omission, addition, and mistranslation. Despite far fewer segments requiring post-editing, document-level post-editing performance was not found to have significantly improved in NMT compared to PBSMT. This evaluation was conducted as part of the TraMOOC project, which aims to create a replicable semi-automated methodology for high-quality machine translation of educational

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

What Level of Quality can Neural Machine Translation Attain on Literary Text?

Given the rise of a new approach to MT, Neural MT (NMT), and its promising performance on different text types, we assess the translation quality it can attain on what is perceived to be the greatest challenge for MT: literary text. Specifically, we target novels, arguably the most popular type of literary text. We build a literary-adapted NMT system for the English-to-Catalan translation direc...

متن کامل

Human Evaluation of Multi-modal Neural Machine Translation: A Case-Study on E-Commerce Listing Titles

In this paper, we study how humans perceive the use of images as an additional knowledge source to machine-translate usergenerated product listings in an e-commerce company. We conduct a human evaluation where we assess how a multi-modal neural machine translation (NMT) model compares to two text-only approaches: a conventional state-of-the-art attention-based NMT and a phrase-based statistical...

متن کامل

A User-Study on Online Adaptation of Neural Machine Translation to Human Post-Edits

The advantages of neural machine translation (NMT) have been extensively validated for offline translation of several language pairs for different domains of spoken and written language. However, research on interactive learning of NMT by adaptation to human post-edits has so far been confined to simulation experiments. We present the first user study on online adaptation of NMT to user post-ed...

متن کامل

Neural versus Phrase-Based Machine Translation Quality: a Case Study

Within the field of Statistical Machine Translation (SMT), the neural approach (NMT) has recently emerged as the first technology able to challenge the long-standing dominance of phrase-based approaches (PBMT). In particular, at the IWSLT 2015 evaluation campaign, NMT outperformed well established state-ofthe-art PBMT systems on English-German, a language pair known to be particularly hard beca...

متن کامل

NMT or SMT: Case Study of a Narrow-domain English-Latvian Post-editing Project

The recent technological shift in machine translation from statistical machine translation (SMT) to neural machine translation (NMT) raises the question of the strengths and weaknesses of NMT. In this paper, we present an analysis of NMT and SMT systems’ outputs from narrow domain English-Latvian MT systems that were trained on a rather small amount of data. We analyze post-edits produced by pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017